1963–1993 | 1994–2000 | 2001–current

  1. WxMoyCzS2nanotubes; W K Hsu, Y Q Zhu, S Firth, M Terrones, H Terrones, S Trasobares, R J H Clark, H W Kroto and D R M Walton; Carbon, 39, 1103-1116 (2001)
  2. Tungsten-niobium-sulfur composite nanotubes; Y Q Zhu, W K Hsu, M Terrones, S Firth, N Grobert, R J H Clark, H W Kroto and D R M Walton, Chem. Comm., 121-122 (2001)
  3. Preparation and characterisation of two [70]fullerene diols, C70Ph8(OH)2; A G Avent, P R Birkett, A D Darwish, H W Kroto, R Taylor and D R M Walton, J. Chem. Soc., Perkin Trans. 2, 68 (2001)
  4. Titanium-doped molybdenum disulfide nanostructures; W K Hsu, Y Q Zhu, N Yao, S Firth, R J H Clark, H W Kroto and D R M Walton, Adv. Functional Mat., 11, 69 (2001)
  5. Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols; M Mayne, N Grobert, M Terrones, R Kamalakaran, M Rühle, H W Kroto and D R M Walton, Chem. Phys. Lett., 338, 101-107 (2001)
  6. Nb-doped WS2nanotubes; Y Q Zhu, W K Hsu, S Firth, M Terrones, R J H Clark, H W Kroto and D R M Walton, Chem. Phys. Lett., 342, 15-21 (2001)
  7. A low resistence boron-doped carbon nanotube-polystyrene complex; P C P Watts, W K Hsu, G Z Cheng, D J Fray, H W Kroto and D R M Walton, J. Mat. Chem., 11, 2482 (2001)
  8. Electron beam puncturing of carbon nanotube containers for release of stored nitrogen gas; S Trasobares, O Stephan, C Colliex, G Hug, W K Hsu, H W Kroto and D R M Walton, Eur. Phys. J B, 22, 117 (2001)
  9. Tungsten disulphide sheathed carbon nanotubes; R L D Whitby, W K Hsu, P K Fearon, H W Kroto, D R M Walton and C B Boothroyd, Chem. Phys. Chem., 2, 620 (2001)
  10. SiOx-coating of carbon nanotubes at room temperature; T Seeger, Ph Redlich, N Grobert, M Terrones, D R M Walton, H W Kroto and M Rühle, Chem. Phys. Lett., 339, 41-46 (2001)
  11. Carbon nanotube templated promoted growth of NbS2nanotubes/nanorods; Y Q Zhu, W K Hsu, H W Kroto and D R M Walton, Chem. Comm., 2184 (2001)
  12. Selective Co-catalysed growth of novel MgO fishbone fractal nanostructures; Y Q Zhu, W K Hsu, W Z Zhou, M Terrones, H W Kroto and D R M Walton, Chem. Phys. Lett., 347,337 (2001)
  13. Some 4-fluorophenyl derivatives of [60]fullerene: oxide-induced fragmentation to C58; A D Darwish, A G Avent, P R Birkett, H W Kroto, R Taylor and D R M Walton, J. Chem. Soc., Perkin Trans. 2, 782 (2001)
  14. WS2nanotubes containing single-walled carbon nanotube bundles; R L D Whitby, W K Hsu, P C P Watts, H W Kroto and D R M Walton, Appl. Phys. Lett., 79, 4574 (2001)
  15. Novel nanostructures: from metal-filled carbon nanotubes to MgO nanoferns; N Grobert, W K Hsu, H W Kroto, M Mayne, M Terrones, P C P Watts, R L D Whitby, D R M Walton and Y Q Zhu, in Perspectives of Fullerene Nanotechnology, E Osawa (Ed),Kluwer AP 1-19 (2002)
  16. Complex WS2nanostructures; R L D Whitby, W K Hsu, T H Lee, C B Boothroyd, H W Kroto and D R M Walton, Chem. Phys. Lett., (proofs 13 May 2002)
  17. Camphor-based carbon nanotubes as an anode in lithium secondary batteries; M Sharon, W K Hsu, H W Kroto, D R M Walton, A Kawahara, T Ishihara and Y Takita, J. Power Sources, 104, 148 (2002)
  18. Field emission from non-aligned carbon nanotubes embedded in a polystyrene matrix; C H Poa, S R P Silva, P C P Watts, W K Hsu, H W Kroto and D R M Walton, Appl. Phys. Lett., 80, 3189 (2002)
  19. Novel SiOx-coated carbon nanotubes; M Rühle, T Seeger, Ph Redlich, N Grobert, M Terrones, D R M Walton and H W Kroto, J. Ceramic Processing Research, 3, 1 (2002)
  20. Multi-walled carbon nanotubes coated with tungsten disulphide; R L D Whitby, W K Hsu, P K Fearon, N C Billingham, I Maurin, H W Kroto, D R M Walton, C B Boothroyd, S Firth, R J H Clark and D Collison, Chem. Mater., 14, 2209 (2002)
  21. Compartmentalised CNxnanotubes; Chemistry, morphology and growth; S Trasobares, O Stephan, G Hug, C Colliex, W K Hsu, H W Kroto and D R M Walton, J. Chem. Phys., 116, 8966 (2002)
  22. Hollow cathode plasma synthesis of carbon nanofiber arrays at low temperature; A Huczko, H Lange, M Sioda, Y Q Zhu, W K Hsu, H W Kroto and D R M Walton, J. Chem. Phys., 106, 1534 (2002)
  23. Tungsten disulphide coated multi-walled carbon nanotubes; R L D Whitby, W K Hsu, C B Boothroyd, H W Kroto and D R M Walton, Chem. Phys. Lett., 359, 121–126 (2002)
  24. WS2 layer formation on multi-walled carbon nanotubes; R L D Whitby, W K Hsu, C B Boothroyd, K S Brigatti, H W Kroto and D R M Walton, Appl. Phys. A 76, 527–532 (2003)
  25. A systematic study of ceramic nanostructures generated by arc-discharge; Y Q Zhu, H W Kroto, D R M Walton, H Langer and A Huczko, Chem. Phys. Lett. 365 457–463 (2002)
  26. An alternative route to NbS2nanotubes; Y Q Zhu, W K Hsu, H W Kroto and D R M Walton, J. Phys. Chem. B., Phys. Chem. B, 106, 7623-7626 (2002)
  27. Conversion of amorphous WO3-xinto WS2nanotubes; R L D Whitby, W K Hsu, H W Kroto and D R M Walton, Phys. Chem. Chem. Phys., 4, 3938-3940 (2002)
  28. Synthesis of Novel Nanostructures by Metal−Polytetrafluoroethene Thermolysis., Andrzej Huczko , Hubert Lange , Grzegorz Chojecki ,Stanisław Cudziło , Yan Qiu Zhu , Harold W. Kroto , and David R. M. Walton Phys. Chem. B, 107, 2519–2524 (2003)
  29. Shock-wave resistance of WS2 nanotubes; Zhu YQ, Sekine T, Brigatti KS, et al.: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 125 (5): 1329-1333 (2003)
  30. WS2/C nanocomposites reviewed.; Whitby RLD, Hsu WK, Boothroyd CB, et al.; NEW DIAMOND AND FRONTIER CARBON TECHNOLOGY 13 (1): 7-18 (2003)
  31. Carbon nanotubes as polymer antioxidants; Watts PCP, Fearon PK, Hsu WK, et al.; JOURNAL OF MATERIALS CHEMISTRY 13 (3): 491-495 (2003)
  32. Synthesis of novel nanostructures by metal-polytetrafluoroethene thermolysis; Huczko A, Lange H, Chojecki G, et al.; JOURNAL OF PHYSICAL CHEMISTRY B 107 (11): 2519-2524 (2003)
  33. WS2 layer formation on multi-walled carbon nanotubes; Whitby RLD, Hsu WK, Boothroyd CB, et al.; APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING 76 (4): 527-532 (2003)
  34. Are bulk defective carbon nanotubes less electrically conducting?; Watts PCP, Hsu WK, Kroto HW, et al.; NANO LETTERS 3 (4): 549-553 (2003)
  35. Catalysed growth of novel aluminium oxide nanorods; Jin YZ, Zhu YQ, Brigatti K, et al.; APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING 77 (1): 113-115 (2003)
  36. Nanocarbon production by arc discharge in water; Lange H, Sioda M, Huczko A, et al.; CARBON 41 (8): 1617-1623 (2003)
  37. Field emission from nonaligned carbon nanotube-polymer matrix cathodes; Poa CHP, Smith RC, Silva SRP, et al. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B 21 (4): 1715-1719 (2003)
  38. Novel nanoscale architectures: coated nanotubes and other nanowires; Whitby RLD, Hsu WK, Zhu YQ, et al. Philosophical Transactions Of The Royal Society Of London Series A-Mathematical Physical And Engineering Sciences 362 (1823): 2127-2142 (2004)
  39. Nanotechnology of carbon and related materials; Kroto H ;Philosophical Transactions Of The Royal Society Of London Series A-Mathematical Physical And Engineering Sciences 362 (1823): 2033-2033 (2004)
  40. Simple approaches to quality large-scale tungsten oxide nanoneedles; Jin YZ, Zhu YQ,* Whitby RLD, Yao N, Ma RZ, Watts PCP, Kroto HW, Walton D R M; Journal Of Physical Chemistry B 108 (40): 15572-15577 (2004)
  41. Co-catalysed VLS growth of novel ceramic nanostructures;  Yan Qiu Zhu, Yi Zheng Jin, Harold W. Kroto, David R. M. Walton ; Journal Of Materials Chemistry 14 (4): 685-689 (2004)
  42. Large-scale production of NbS2 nanowires and their performance in electronic field emission.; Y. Z. Jin, W. K. Hsu, Y. L. Chueh, L. J. Chou, Y. Q. Zhu, K. Brigatti, H. W. Kroto And D. R. M. Walton; Angewandte Chemie International Edition 43: 5670-5674 (2004)
  43. Poly(N-isopropylacrylamide)-Coated Carbon Nanotubes: Temperature-Sensitive Molecular Nanohybrids in Water.; H. Kong, W. Li, C. Gao, D. Y. Yan, Y. Z. Jin, D. R. M. Walton, And H. W. Kroto; Macromolecules 37: 6683 (2004)
  44. Polar assembly in a designed protein fiber.; Smith A M, Acquah S F A, Bone N, Kroto H W, Ryadnov M G, Stevens M S P, Walton D R M, & Woolfson D N; Angew. Chem. Int. Ed. 44: 325-328 (2004)
  45. Dielectric Properties Of WS2-Coated Multiwalled Carbon Nanotubes Studied By Energy-Loss Spectroscopic Profiling; Vlad Stolojan, S. R. P. Silva, Michael J. Goringe, R. L. D. Whitby, Wang K. Hsu, D. R. M. Walton, and Harold W. Kroto; Appl. Phys. Lett. 86, 063112 (2005)
  46. Pulmonary toxicity of 1-D nanocarbon materials; Fullerenes Nanotubes And Carbon Nanostructures; Huczko A; Lange H; Bystrzejewski M; Baranowski P; Grubek-Jaworska H; Nejman P; Przybylowski T; Czuminska K; Glapinski J; Walton DRM; Kroto HW.;  13 (2): 141-145 (2005)
  47. A Systematic Study Of The Large-Scale Synthesis And Characterization Of Carbon Spheres Prepared By Direct Pyrolysis Of Hydrocarbons.; Yi Zheng Jin, Chao Gao, Wen Kuang Hsu, Yanqiu Zhu, Andrzej Huczko, Michal Bystrzejewski, Martin Roe, Chi Young Lee, Steve Acquah, Harold Kroto and David R. M. Walton; Carbon 43; 1944–1953 (2005)
  48. Polyurea-Functionalized Multiwalled Carbon Nanotubes: Synthesis, Morphology, and Raman Spectroscopy; – J. Phys. Chem. B . ; 109 (24); 11925-11932 (2005)
  49. Atlas Of Kekule Valence Structures Of Buckminsterfullerene; Vukicevic D, Kroto HW, Randic M; Croatica Chemica Acta 78 (2): 223-234 (2005)
  50. Polymer-Grafted Carbon Spheres By Surface-Initiated Atom Transfer Radical Polymerization; Jin YZ; Gao C; Kroto HW; Maekawa T.; Macromolecular Rapid Communications 26 (14): 1133-1139, (2005)
  51. XSW Feasibility Study of C60Ph5OH on Ag(111): combining hard X-rays, low Z and, low coverage; Schulte K; Woolley RAJ; Wang L; Moriarty PJ; Birkett PR; Kroto HW; Cowie B.C.C; Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment 547 (1): 208-215 (2005)
  52. (C6H5)5C60H at Si(111)-(7×7) and Ag : Si(111)-(root 3x root 3)R30 degrees surfaces ; Phillips MA; O’Shea JN; Birkett PR; Purton J; Kroto HW; Walton DRM; Taylor R; Moriarty P; Physical Review B 72 (7): Art. No. 075426 (2005)
  53. High Temperature Annealing Effects On Carbon Spheres And Their Applications As Anode Materials In Li-Ion Secondary Battery. Jin, Y. Z., Kim, Y. J., Gao, C., Zhu, Y. Q., Huczko, A., Endo, M. And Kroto, H. W. ; Carbon, 44(4), 724-729. (2006)
  54. Supramolecular chemistry of fullerenes; Kroto HW; Tetrahedron 62 (9): 1921 (2006)
  55. Lateral Translation Of Covalently Bound Fullerenes. Journal of Physics: Condensed Matter, M J Humphry, P H Beton, D L Keeling, R H J Fawcett, P Moriarty, M J Butcher, P R Birkett, D R M Walton, R Taylor And H W Kroto, 18, S1837-S1846 (2006)
  56. Some New Insights In To The Mechanisms Of Fullerene And Nanotube Formation; Kroto H; Applied Surface Science 252 (19): 6403-6403 (2006)
  57. 343 In Situ Nucleation Of Carbon Nanotubes By The Injection Of Carbon Atoms Into Metal Particles.; Rodríguez-Manzo J A; Terrones M; Terrones H; Kroto H W; Sun Litao; Banhart F; Nature nanotechnology; 2(5):307-11. (2007)
  58. Numerical Kekule structures of fullerenes and partitioning of pi-electrons to pentagonal and hexagonal rings; Randic M, Kroto HW, Vukicevic D; Journal Of Chemical Information And Modeling; 47 (3): 897-904 (2007)
  59. Enhancement Of Polymer Luminescence By Excitation-Energy Transfer From Multi-Walled Carbon Nanotubes.; Small Henley S J; Hatton R A; Chen Guan Y; Gao Chao; Zeng Hailin; Kroto H W; Silva S R P; (Weinheim an der Bergstrasse, Germany) 3(11):1927-33. (2007)
  60. Structural And Optoelectronic Properties Of C60 Rods Obtained Via A Rapid Synthesis Route; Jin, R. J. Curry, J. Sloan, R. A. Hatton, L. C. Chong, N. Blanchard, V. Stolojan, H. W. Kroto and S. R. P. Silva, J. Mater. Chem., 16, 3715-3720 (2007)
  61. Order-Disorder Antiferroelectric Phase Transition In A Hybrid Inorganic-Organic Framework With The Perovskite Architecture. Jain Prashant; Dalal Naresh S; Toby Brian H; Kroto Harold W; Cheetham Anthony K; J.A.C.S.; 130(32): 10450-1, (2008)
  62. Multiferroic Behavior Associated with an Order−Disorder Hydrogen Bonding Transition in Metal−Organic Frameworks (MOFs) with the Perovskite ABX3 Architecture; Prashant Jain, Vasanth Ramachandran, Ronald J. Clark, Hai Dong Zhou, Brian H. Toby, Naresh S. Dalal, Harold W. Kroto and Anthony K. Cheetham* Am. Chem. Soc., 131 (38), pp 13625–13627 (2209)
  63. Closed Network Growth of Fullerenes, Dunk, P. W.; Kaiser, N. K.; Hendrickson, C. L.; Quinn, J. P.; Ewels, C. P.; Nakanishi, Y.; Sasaki, Y.; Shinohara, H.; Marshall, A. G.; Kroto, H. W. Nature Communications 3, 855. 9 (2012)
  64. “The Smallest Stable Fullerene, M@C28 (M=Ti, Zr, U): Stabilization and Growth From Carbon Vapor,” Dunk, P. W.; Kaiser, N. K.; Mulet-Gas, M.; Rodriguez-Fortea, A.; Poblet, J. M.; Shinohara, H.; Hendrickson, C. L.; Marshall, A. G.; Kroto, H. W. Am. Chem. Soc. 134, 9380-9389 (2012)
  65. “Charge Reversal Fourier Transform Ion Cyclotron Resonance Mass Spectrometry” Lobodin, V.V.; Savory, J.J.; Dunk, P.W., Marshall, A.G.; Am. Soc. Mass. Spectr. 24, 213-221 (2013)
  66. “Formation of Heterofullrenes by Direct Exposure of C60 to Boron Vapor,” Dunk, P. W.; Rodriguez-Fortea, A.; Kaiser, N. K.; Poblet, J. M.; Kroto, H. W. Chem. Int. Ed. 52 (1), 315-319 (2013)
  67. “Metallofullerene and Fullerene Formation from Condensing Carbon Gas under Conditions of Stellar Outflows and Implication to Stardust, Dunk, P. W.; Adjizian, J.-J.; Kaiser, N. K.; Quinn, J. P.; Blakney, G. T.; Ewels, C. P.; Marshall, A. G.; Kroto, H. W.; ” Natl. Acad. Sci. U.S.A. 2013, 110 (45), 18081-18086 (2013)
  68. “Small Endohedral Metallofullerenes: Exploration of the Structure and Growth Mechanism in the Ti@C2n Family,” Mulet-Gas, M.; Abella, L.; Dunk, P. W.; Rodriguez-Fortea, A.; Kroto, H. W.; Poblet, J. M.; Sci. 2014, Advance Article
  69. Dunk, P.W.; Mulet-Gas, M.; Nakanishi, Y.; Kaiser, N.K.; Rodriguez-Fortea, A.; Shinohara, H.; Marshall, A.G.; Kroto, H.W. Nature Communications 2014

1963–1993 | 1994–2000 | 2001–current